首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of a satellite orbiting a planet with an inhomogeneous gravitational field
Authors:J F Palacián
Institution:(1) Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain
Abstract:We study the dynamics of a satellite (artificial or natural) orbiting an Earth-like planet at low altitude from an analytical point of view. The perturbation considered takes into account the gravity attraction of the planet and in particular it is caused by its inhomogeneous potential. We begin by truncating the equations of motion at second order, that is, incorporating the zonal and the tesseral harmonics up to order two. The system is formulated as an autonomous Hamiltonian and has three degrees of freedom. After three successive Lie transformations, the system is normalised with respect to two angular co-ordinates up to order five in a suitable small parameter given by the quotient between the angular velocity of the planet and the mean motion of the satellite. Our treatment is free of power expansions of the eccentricity and of truncated Fourier series in the anomalies. Once these transformations are performed, the truncated Hamiltonian defines a system of one degree of freedom which is rewritten as a function of two variables which generate a phase space which takes into account all of the symmetries of the problem. Next an analysis of the system is achieved obtaining up to six relative equilibria and three types of bifurcations. The connection with the original system is established concluding the existence of various families of invariant 3-tori of it, as well as quasiperiodic and periodic trajectories. This is achieved by using KAM theory techniques.
Keywords:Satellite dynamics  Zonal and tesseral harmonics  Delaunay normalisation  Reduction and invariant theories  Bifurcation lines  Non-linear stability  KAM theory  Invariant tori  Quasiperiodic and periodic orbits
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号