首页 | 本学科首页   官方微博 | 高级检索  
     


Harmonic maps
Authors:E.W. Grafarend
Affiliation:(1) Department of Geodesy and GeoInformatics, Stuttgart University, Geschwister-Scholl-Str. 24, 70174 Stuttgart, Germany
Abstract:Harmonic maps are generated as a certain class of optimal map projections. For instance, if the distortion energy over a meridian strip of the International Reference Ellipsoid is minimized, we are led to the Laplace–Beltrami vector-valued partial differential equation. Harmonic functions x(L,B), y(L,B) given as functions of ellipsoidal surface parameters of Gauss ellipsoidal longitude L and Gauss ellipsoidal latitude B, as well as x(ell,q), y(ell,q) given as functions of relative isometric longitude ell=LL0 and relative isometric latitude q=QQ0 gauged to a vector-valued boundary condition of special symmetry are constructed. The easting and northing {x(b,ell),y(b,ell)} of the new harmonic map is then given. Distortion energy analysis of the new harmonic map is presented, as well as case studies for (1) Bisin[–40°,+40°], Lisin[–31°,+49°], B0= ±30°, L0=9° and (2) Bisin[46°,56°], Lisin{[4.5°, 7.5°]; [7.5°, 10.5°]; [10.5°,13.5°]; [13.5°,16.5°]}, B0= 51°, L0isin {6°,9°,12°,15°}.
Keywords:Harmonic maps  Optimal map projections  Maps of the ellipsoid of revolution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号