首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Paddy soil — A suitable target for monitoring heavy metal pollution by magnetic proxies
Authors:HT Yan  SY Hu  U Blaha  W Rösler  XM Duan  E Appel
Institution:aState Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;bInstitute for Geoscience, University of Tübingen, 72076 Tübingen, Germany;cGraduate University of Chinese Academy of Sciences, Beijing 100049, China;dDepartment of Geography, Shanghai Normal University, Shanghai 200234, China
Abstract:A preliminary magnetic study around Meishan steel mill in Nanjing (SE China) was carried out combining geochemical analysis with scanning electron microscopy (SEM) to prove that paddy soil can be a suitable target for environmental study on heavy metal pollution. Magnetic background investigation showed a strong variation in this area due to different land uses and soil types. Magnetic susceptibilities (MS) measured on forest soils are much higher than in paddy fields, and values below 20 cm of the soil surface in forest with parent material of Xiashu loess are several times higher than in paddy soil with parent material of fluvisol. Measurements on vertical profiles show that paddy soil has a very low and stable magnetic background with mass-specific MS around 15 × 10− 8 m3 kg− 1. A strong enhancement of MS values is found in the upper ~ 20 cm of paddy soil predominated by multidomain and pseudo single domain magnetite. However, relatively low S-ratios (0.57 to 0.85) reveal a significant contribution of imperfect anti-ferromagnetic minerals. Detailed research on a paddy soil core at site C719 near the steel mill indicates strong correlation between magnetic mineral concentration-related parameters (χ, ARM, SIRM) and heavy metal concentrations of Cu, Pb and Zn. In addition, typical anthropogenic Fe-spherules are detected in top paddy soil by means of SEM, which indicates that the increase of susceptibility in upper soil is mainly caused by steel mill emission. Mapping of MS in paddy fields across the steel mill area shows a decrease of MS with the distance to the major emission zone. Positive correlation between χ and Zn is found by measuring surface soil samples around the steel mill. Because of low background and high homogeneity of the ~ 20 cm uppermost mixing layer paddy fields are especially suitable for magnetic surface mapping of heavy metal pollution.
Keywords:Magnetic susceptibility  Heavy metal  Pollution  Paddy soil
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号