首页 | 本学科首页   官方微博 | 高级检索  
     


Cosmogenic radionuclide dating indicates ice‐sheet configuration during MIS 2 on Nordaustlandet,Svalbard
Authors:ANNE HORMES  NAKI AKÇAR  PETER W. KUBIK
Affiliation:1. The University Centre in Svalbard, Arctic Geology, Pb 156, 9171 Longyearbyen, Norway;2. University of Bern, Institute of Geological Sciences, Baltzerstrasse 1‐3, 3012 Bern, Switzerland;3. Laboratory of Ion Beam Physics, ETH Zürich, Schafmattstrasse 20, 8093 Zürich, Switzerland
Abstract:Hormes, A., Akçar, N. & Kubik, P. W. 2011: Cosmogenic radionuclide dating indicates ice‐sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas, 10.1111/j.1502‐3885.2011.00215.x. ISSN 0300‐9483.0300‐9843 Glacial geological field surveys, aerial image interpretation and cosmogenic radionuclide (CRN) dating allowed us to reconstruct the ice‐sheet configuration on Nordaustlandet, the northernmost island of the European sector on the margin of the Arctic Ocean. The timing of deglaciation was investigated by determining the 26Al and 10Be ages of glacially scoured bedrock, weathered periglacial blockfields and glacial erratic boulders. Only 10Be ages were useful for our interpretations, because of unresolved analytical problems with 26Al. Fjords and lowlands on Nordaustlandet yielded Late Weichselian 10Be ages, indicating that actively erosive ice streams scoured the coastal fjord bathymetry during marine isotope stage (MIS) 2. In Murchisonfjorden, ground‐truthed air‐photograph interpretation and 10Be ages of boulders indicated a cold‐based glacier ice cover during MIS 2 on higher plateaus. 10Be ages and lithological studies of erratic boulders on higher and interior plateaus of Prins Oscars Land (>200–230 m a.s.l.) suggest that the Mid‐Weichselian glaciation (MIS 4) might have been more extensive than that during MIS 2.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号