首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of FeO on the system CMAS at low pressure and implications for basalt crystallization processes
Authors:Ping Shi  Guy Libourel
Affiliation:1. Bayerisches Geoinstitut, Universit?t Bayreuth, Postfach 101251, W-8580, Bayreuth, FRG
Abstract:The common occurrence of olivine, clinopyroxene and plagioclase in natural basalts may suggest that crystallization of these phases exerts important controls on the evolution of natural basalts at low pressure. In order to understand the effects of such an assemblage on the evolution of basalt, an experimental study of the divariant assemblage 1+an+cpx+ol in the system CMAS + FeO was undertaken at 1 bar and under very reducing conditions. Experiments have been performed along three isothernal sections. Detailed electron microprobe data have been collected on all the coexisting phases. Combining these data with available data in the system CMAS, the compositions of all the coexisting phases have been described as functions of temperature and CaO content in the melt by applying a multiple linear regression method. This allows a quantitative characterization of the divariant assemblage 1+an+epx+ol in the system CMAS + FeO, from 1275°C to 1160°C, with liquid compositions ranging from mg#=1 to mg#=0.28. Knowing the composition-temperature relationships, the basic T-X configuration of the assemblage 1+an+cpx+ol has been analysed, and mass balance calculations have been performed to examine the FeO effect on different crystallization processes. Addition of FeO to the system CMAS transforms the thermal divide in the assemblage 1+an+cpx+ol to a thermal ridge, and shifts the spine of the thermal ridge towards SiO2-poor compositions with decreasing temperature. This indicates that tholeiitic basalts can be relatively silica-poor, and evolve towards slightly more silica-poor compositions. With increasing FeO content, pigeonite replaces ortheonstatite as a crystallizing phase along the silica-rich boundary of the assemblage 1+an+cpx+ol. In some iron, and silica rich composition, olivine possibly terminates its crystallization or even starts resorption prior to pigeonite precipitation; this suppresses silica enrichment in the melt. Crystallization paths of the assemblage 1+an+cpx+ol are determined by the detailed T-X relations of the thermal ridge with the melt evolving away from the spine. The liquid evolution trend depends strongly on the initial compositions. A tholeiitic liquid can follow a moderate silica enrichment path at the same very reducing condition of there is a high modal proportion of olivine. ‘A Fenner mechanism therefore is at work at the same place as a Bowen mechanism’.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号