首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sur les solutions Lagrangiennes du problème des trois corps solides avec la loi de Weber
Authors:G N Doubochine
Institution:1. Institut Astronomique d'état, Université de Moscou, USSR
Abstract:In this work we consider the problem of translational-rotational motion of three solid bodies, for which the elementary particles attract each other according to different Weber's laws for each pair of bodies. This problem represents a special case of the generalized problem of three solids considered in a previous work, (Dubochin, 1974) and it gives an example of the verification of the existence conditions for the Lagrangian solutions. In these solutions, the centers of mass always for m an equilateral triangle. Each body has axial symmetry with the plane of symmetry perpendicular to the axis of symmetry rotates uniformly around this axis, which at any instant stays perpendicular to the plane of the triangle formed by the centers of mass. According to Weber's law (Tisserand, 1896) the elementary particles of two bodiesT i andT j (i, j=0, 1, 2) are attracted by forces which are proportional to the function $$F_{ij} (W) = \frac{{f_{ij} }}{{\Delta _{ij^2 } }}\left {1 - a_{ij} \dot \Delta _{ij^2 } + 2a_{ij} \Delta _{ij} \ddot \Delta _{ij} } \right]$$ wheref ij anda ij (in generalf ji f ij anda ji a ij ) are functions of the timet, and where the real quantities Δij are the mutual distances between the particles of the bodiesT i andT j , and where \(\dot \Delta _{ij} \) and \(\ddot \Delta _{ij} \) are their derivatives with respect to the time. The analysis of the general conditions for the Lagrangian solutions gives the following results for the case of Weber's laws.
  1. Only the invariant Lagrangian solutions, (the traingle of the centres of mass does not change in time) are possible in this problem.
  2. Besides the conditions (NL) obtained in the case of the Newton-Coulomb law, (all thea ij are zero), the complementary conditions (WL) must be satisfied.
In particular, if all the bodies are spheres or homogeneous ellipsoids, they must necessarily have the same dimensions, but they can have different masses.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号