首页 | 本学科首页   官方微博 | 高级检索  
     

叶片化学组分成像光谱遥感探测机理分析
引用本文:牛铮,陈永华,隋洪智,张庆员,赵春江. 叶片化学组分成像光谱遥感探测机理分析[J]. 遥感学报, 2000, 4(2): 125-130
作者姓名:牛铮  陈永华  隋洪智  张庆员  赵春江
作者单位:1. 中国科学院,遥感应用研究所,北京,100101
2. 北京市农林科学院,作物研究所,北京,100089
基金项目:863项目3081303!( 0 2 )
摘    要:利用地面光谱仪的测量数据 ,进行了成像光谱遥感探测叶片化学组分的机理性研究。采用多元逐步回归方法 ,分析了鲜叶片 7种化学组分含量与其光谱特性的统计关系 ,分别建立了反射率 ρ及其变化式 1/ρ、logρ和ρ的一阶导数Kρ 与化学组分含量的统计方程 ,并对这 4个指标的性能进行了比较和评价。结果表明 ,在 95 %的置信水平下 ,可以由叶片的精细光谱特征较好地反映出化学组分含量 ;特别是利用Kρ 作为因子 ,使置信水平提高到 99% ,尤以对粗蛋白质、N、K含量反映最好 ,R2 均达到 0 8以上 ,粗蛋白质可达 0 95 6 4,从而为进一步探讨在中国利用成像光谱遥感探测叶片化学组分奠定了基础

关 键 词:成像光谱遥感  叶片  化学组分
收稿时间:1999-01-08
修稿时间:1999-12-03

Mechanism Analysis of Leaf Biochemical Concentration by High Spectral Remote Sensing
NIU Zheng,CHEN Yong-hu,SUI Hong-zhi,ZHANG Qing-yuan and ZHAO Chun-jiang. Mechanism Analysis of Leaf Biochemical Concentration by High Spectral Remote Sensing[J]. Journal of Remote Sensing, 2000, 4(2): 125-130
Authors:NIU Zheng  CHEN Yong-hu  SUI Hong-zhi  ZHANG Qing-yuan  ZHAO Chun-jiang
Affiliation:Institute of Remote Sensing of Applications, Chinese Academy of Sciences, Beijing 100101, China;Institute of Remote Sensing of Applications, Chinese Academy of Sciences, Beijing 100101, China;Institute of Remote Sensing of Applications, Chinese Academy of Sciences, Beijing 100101, China;Institute of Remote Sensing of Applications, Chinese Academy of Sciences, Beijing 100101, China;Institute of Crop., Beijing Academy of Agriculture and Fo
Abstract:This paper presents the mechanism research on predicting the biochemical concentration of fresh leaves by high spectral remote sensing. Based on analyzing the concentrations of seven chemical components, including total chlorophyll, water, crude protein, soluble sugar, N, P and K, with certain chemical methods and detecting their optical properties with surface spectrometre, we establish the statistical relationships between the concentration and reflectance through the stepwise multiple regression method. So did the relationships between the concentrations and several transformations of reflectance such as the reciprocal, the logarithm, and the first derivative of the reflectance. The results show good prediction performance for chlorophyll, water, crude protein, N and K with high values of the squared multiple correlation coefficients ( R 2) and high confidence level (>95%). Especially, R 2 value of the corralation between crude protein concentration and the first derivative of reflectance is 0.9564, which is the best result in the study of the fresh leaf's biochemistry. The research lays a good basis for further discussion on predicting leaf biochemical concentration by high spectral remote sensing in China.
Keywords:high spectral remote sensing  leaf biochemical concentration
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号