首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of ice sheet growth and melting on the slip evolution of thrust faults
Authors:Heidi Turpeinen   Andrea Hampel   Tobias Karow  Georgios Maniatis
Affiliation:

aInstitut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany

Abstract:Field investigations suggest that postglacial unloading and rebound led to the formation or re-activation of reverse faults even in continental shields like Scandinavia. Here we use finite-element models including a thrust fault embedded in a rheologically layered lithosphere to investigate its slip evolution during glacial loading and subsequent postglacial unloading. The model results show that the rate of thrusting decreases during the presence of an ice sheet and strongly increases during deglaciation. The magnitude of the slip acceleration is primarily controlled by the thickness of the ice sheet, the viscosity of the lithospheric layers and the long-term shortening rate. In contrast, the width of the ice sheet, the rate of deglaciation or the fault dip have an only minor influence on the slip evolution. In all experiments, the slip rate variations are caused by changes in the differential stress. The modelled deglaciation-induced slip acceleration agrees well with the occurrence of large earthquakes soon after the melting of the Fennoscandian ice sheet, which led to the formation of spectacular fault scarps in particular in the Lapland Fault Province. Furthermore, our model results support the idea that the low level of seismicity in currently glaciated regions like Greenland and Antarctica is caused by the presence of the ice sheets. Based on our models we expect that the decay of the Greenland and Antarctica ice sheets in the course of global warming will ultimately lead to an increase in earthquake frequency in these regions.
Keywords:thrust fault   neotectonics   postglacial rebound   finite-element modelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号