Morphotectonic Appraisal of Yamuna River Basin in Headwater Region: A Relative Active Tectonics Purview |
| |
Authors: | R. K. Dubey Gyan Prakash Satyam |
| |
Affiliation: | 1.Indian Institute Technology (Indian School of Mines),Dhanbad,India |
| |
Abstract: | In the present paper integrated appraisals of landform evolution and their geomorphic features, drainage networks across the upper part of Yamuna river basin have been attempted by using various geomorphic indices such as watershed, drainage density (D), drainage texture, stream-gradient index (SL), hypsometric integral (HI), drainage basin asymmetry (AF), mountain front sinuosity (Smf), sinuosity index (SI), valley floor height and width ratio (Vf) and data of historical earthquakes in characterizing the basin in view of relative index of active tectonics (RIAT) on DEM in geographic information systems (GIS) environment to assess the influence of recent tectonics on geomorphologic growth of the basin.The substantiated RIAT classes through some field observations and corroborated by recent seismicity reveal the recent activation of Yamuna tear faults in the basin with delineation of four RIAT classes such as class-1 (inactive 9.8% of the area), class-2 (low active; 16.40% of the area), class-3 (moderately active; 42.38% of the area) and class-4 (very active; 31.62%). The results suggest that the Himalayan frontal thrust (HFT) and Yamuna tear (YT) located in the basin is morphogenic in nature and got activated several times as evidenced by number of seismic activities in the basin and adjoining regions. The incision, and sharp turning of rivers, crenulations and warping of cross beddings/laminations and silt/clay beds and lenses, megascopic and mesoscopic faulting in sediment sequences suggest a very active nature of the HFT and YT till date in association with three prolific microseismogenic weak zones These active discontinuities appear to support the formation and development of different deformational features in sediment sequences which may be indirectly related to subduction and underthrusting of Indian plate under Eurasian plate below the Himalayan mountain chain. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|