首页 | 本学科首页   官方微博 | 高级检索  
     


Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food webs
Authors:P. G. Verity
Abstract:A combined empirical and modelling study was conducted to further examine the potential importance of grazing by zooplankton in pelagic food webs in which Phaeocystis is a significant or dominant component. Laboratory experiments were designed to measure ingestion of Phaeocystis and other potential prey items which co-occur with Phaeocystis. Grazers included copepods and ciliates, and prey included Phaeocystis colonies and solitary cells, diatoms, ciliates, bacteria, and detritus. These data were expressed in the model currency of nitrogen units, and fit to hyperbolic tangent equations which included minimum prey thresholds. These equations and literature data were used to constrain a food web model whose purpose was to investigate trophic interactions rather than to mimic actual events. Nevertheless, the model output was similar to the general pattern and magnitude of development of Phaeocystis–diatom communities in some environments where they occur, e.g. north Norwegian waters. The model included three forms of nitrogen, three phytoplankton groups, bacteria, two zooplankton groups, and detritus, with detailed flows between compartments. An important component of the model was inclusion of variable prey preferences for zooplankton. The experiments and model simulations suggest several salient conclusions. Phaeocystis globosa colonies were eaten by a medium-sized copepod species, but ingestion appeared to be strongly dependent upon a proper size match between grazer and prey. If not, colonies were eaten little if at all. Phaeocystis solitary cells were ingested rapidly by ciliate microzooplankton, in agreement with prior literature observations. In contrast, detritus was eaten comparatively slowly by both ciliates and copepods. Both types of zooplankton exhibited apparent minimum prey thresholds below which grazing did not occur or was inconsequential. Model simulations implied that transitions between life cycle stages of Phaeocystis may potentially be important to phytoplankton–zooplankton interactions, and that relative rates of ingestion of Phaeocystis by various zooplankton may have significant impacts upon material fluxes through and out of Phaeocystis–diatom ecosystems. Indirect effects of trophic interactions appear to be equally significant as direct effects.
Keywords:Phaeocystis   food web model   nitrogen   grazing   zooplankton   life cycle   detritus
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号