首页 | 本学科首页   官方微博 | 高级检索  
     检索      


U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb
Authors:Blair Schoene  Samuel A Bowring
Institution:(1) Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Room 54-1116, 77 Massachusetts Ave., Cambridge, MA 02139, USA
Abstract:Recent advances in U–Pb geochronology allow unprecedented levels of precision in the determination of geological ages. However, increased precision has also illuminated the importance of understanding subtle sources of open-system behavior such as Pb-loss, inheritance, intermediate daughter product disequilibria, and the accuracy of the model assumptions for initial Pb. Deconvolution of these effects allows a much richer understanding of the power and limitations of U–Pb geochronology and thermochronology. In this study, we report high-precision ID-TIMS U–Pb data from zircon, baddelleyite, titanite and apatite from the McClure Mountain syenite, from which the 40Ar/39Ar hornblende standard MMhb is derived. We find that excess 206Pb in zircon due to inclusions of high-Th minerals and elevated Th/U in titanite and apatite jeopardize the utility of the 238U–206Pb system in this rock. Strongly air-abraded zircons give dates that are younger than chemical-abraded zircons, which yield a statistically robust 207Pb/235U date of 523.98±0.12 Ma that is interpreted as the crystallization age. We explore the best method of Pbc correction in titanite and apatite by analyzing the U–Pb isotopes of K-feldspar and using 2-D and 3-D regression methods—the latter of which yields the best results in each case. However, the calculated compositions of Pbc for titanite, apatite and K-feldspar are different, implying that using a single Pbc correction for multiple U–Pb thermochronometers may be inaccurate. The U–Pb thermochronological results are used to predict a closure time for Ar in hornblende of 522.98±1.00 Ma. Widely cited K–Ar and 40Ar/39Ar dates overlap with the U–Pb date, and relatively large errors make it impossible to verify whether U–Pb dates are systematically ≤1% older than K–Ar and 40Ar/39Ar dates.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号