首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational and rapid expected annual loss estimation methodologies for structures
Authors:Kevin M Solberg  Rajesh P Dhakal  John B Mander  Brendon A Bradley
Institution:Department of Civil Engineering, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
Abstract:Expected annual loss (EAL), which can be expressed in dollars, is an effective way of communicating the seismic vulnerability of constructed facilities to owners and insurers. A simplified method for estimating EAL without conducting time‐consuming non‐linear dynamic analyses is presented. Relationships between intensity measures and engineering demand parameters resulting from a pushover analysis and a modified capacity‐spectrum method are combined with epistemic and aleatory uncertainties to arrive at a probabilistic demand model. Damage measures are established to determine thresholds for damage states from which loss ratios can be defined. Financial implications due to damage can then be quantified in the form of EAL by integrating total losses for all likely earthquake scenarios. This rapid loss estimation method is verified through the computationally intensive incremental dynamic analysis, with the results processed using a distribution‐free methodology. To illustrate the application of the proposed method, the seismic vulnerability of two highway bridge piers is compared; one bridge is traditionally designed for ductility while the other is based on an emerging damage avoidance design (DAD) philosophy. The DAD pier is found to have a clear advantage over the conventional pier; the EAL of the DAD pier is less than 20% of its ductile counterpart. This is shown to be primarily due to its inherent damage‐free behaviour for small to medium earthquake intensities, whose contribution to EAL is significantly more than that of very rare events. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:expected annual loss (EAL)  performance‐based earthquake engineering (PBEE)  incremental dynamic analysis (IDA)  seismic financial risk  damage avoidance design (DAD)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号