首页 | 本学科首页   官方微博 | 高级检索  
     


High frequency stream bed mobility of a low‐gradient agricultural stream with implications on the hyporheic zone
Authors:Eric W. Peterson  Timothy B. Sickbert  Suzanna L. Moore
Affiliation:Department of Geography‐Geology, Illinois State University Campus, Box 4400, Normal, IL 61790, USA
Abstract:Little Kickapoo Creek (LKC), a low‐gradient stream, mobilizes its streambed–fundamentally altering its near‐surface hyporheic zone–more frequently than do higher‐gradient mountain and karst streams. LKC streambed mobility was assessed through streambed surveys, sediment sampling, and theoretical calculations comparing basal shear stress (τb) with critical shear stress (τc). Baseflow τb is capable of entraining a d50 particle; bankfull flow could entrain a 51·2 mm particle. No particle that large occurs in the top 30 cm of the substrate, suggesting that the top 30 cm of the substrate is mobilized and redistributed during bankfull events. Bankfull events occur on average every 7·6 months; flows capable of entraining d50 and d85 particles occur on average every 0·85 and 2·1 months, respectively. Streambed surveys verify streambed mobility at conditions below bankfull. While higher gradient streams have higher potential energy than LKC, they achieve streambed‐mobilization thresholds less frequently. Heterogeneous sediment redistribution creates an environment where substrate hydraulic conductivity (K) varies over four orders of magnitude. The frequency and magnitude of the substrate entrainment has implications on hyporheic zone function in fluid, solute and thermal transport models, interpretations of hyporheic zone stability, and understanding of LKC's aquatic ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:sediment transport  low‐gradient stream  hyporheic zone  groundwater/surface‐water relations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号