Footings under seismic loading: Analysis and design issues with emphasis on bridge foundations |
| |
Authors: | George Mylonakis Sissy Nikolaou George Gazetas |
| |
Affiliation: | aUniversity of Patras, Rio GR-26500, Greece;bMueser Rutledge Consulting Engineers, USA;cNational Technical University, Athens, Greece |
| |
Abstract: | The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated. |
| |
Keywords: | Dynamics Footings Impedance Kinematic response Soil– structure interaction Numerical methods |
本文献已被 ScienceDirect 等数据库收录! |
|