首页 | 本学科首页   官方微博 | 高级检索  
     

基于表观电导率与实测光谱的干旱区湿地土壤盐分监测
引用本文:杨爱霞,丁建丽,李艳红,邓凯,王瑾杰. 基于表观电导率与实测光谱的干旱区湿地土壤盐分监测[J]. 中国沙漠, 2016, 36(5): 1365-1373. DOI: 10.7522/j.issn.1000-694X.2015.00143
作者姓名:杨爱霞  丁建丽  李艳红  邓凯  王瑾杰
作者单位:1. 新疆大学 资源与环境科学学院/绿洲生态教育部重点实验室, 新疆 乌鲁木齐 830046;2. 新疆师范大学 地理科学与旅游学院/新疆干旱区湖泊环境与资源实验室, 新疆 乌鲁木齐 830054
基金项目:国家自然科学基金项目(41130531,41171036);新疆维吾尔自治区青-科技创新人才培养工程项目(2013711014);教育部新世纪优秀人才支持计划(NCET-12-1075);霍英东青-教师基金项目(121018);教育部长江学者计划创新团队计划项目(IRT1180);新疆维吾尔自治区科技计划项目资助(201433115);新疆大学优秀博士研究生创新项目(XJUBSCX-2012026)
摘    要:以新疆艾比湖滨盐渍化土壤为对象,利用磁感应电导仪和光谱仪测得的盐渍土表观电导率和可见光/近红外光谱数据,选取与EM38解译的土壤盐分相关性最好的光谱变换形式和特征波长,分别建立多元逐步回归、偏最小二乘回归和支持向量回归的土壤盐分监测模型。结果表明:(1)表观电导率两种模式相结合建立的盐分含量解译模型的拟合优度达到0.91,即在该区域内电磁感应技术可用于土壤盐分含量的间接监测。(2)一阶微分处理优于二阶微分,经一阶微分变换后的光谱可以较好地预测土壤盐分含量。(3)3种建模方法中,支持向量回归的建模精度最高,偏最小二乘回归和多元逐步回归次之。干旱区湖滨湿地土壤盐分含量的估测模型宜选取基于平滑后的原始一阶微分光谱数据建立的支持向量回归模型。

关 键 词:盐渍化  电磁感应技术  可见光/近红外土壤光谱  监测模型  
收稿时间:2015-07-09
修稿时间:2015-08-24

Apparent Electronic Conductivity and Measured Spectral for Monitoring Soil salt Content in Arid Lakeside Wetland
Yang Aixia,Ding Jianli,Li Yanhong,Deng Kai,Wang Jinjie. Apparent Electronic Conductivity and Measured Spectral for Monitoring Soil salt Content in Arid Lakeside Wetland[J]. ournal of Desert Research, 2016, 36(5): 1365-1373. DOI: 10.7522/j.issn.1000-694X.2015.00143
Authors:Yang Aixia  Ding Jianli  Li Yanhong  Deng Kai  Wang Jinjie
Affiliation:1. College of Resource and Environment Sciences/Key Laboratory of Oasis Ecology of Ministry of Education, Xinjiang University, Urumqi 830046, China;2. College of Geographical Sciences and Tourism/Xinjiang Key Laboratory of Lake Environment and Resources in Arid Zone, Xinjiang Normal University, Urumqi 830054, China
Abstract:This paper selected the Ebinur Lake as a study area and established multivariate stepwise regression, partial least square regression and support vector machine regression model based on the site measured data of apparent electronic conductivity and spectral with EM38 and ASD Fieldspec HH. In the three models, the apparent electronic conductivity measured with EM38 selected as independent variable and the measured soil soluble salt content as a dependent variable, and the selected spectral transformation form and characteristic bands have best correlation with the interpreted soil salinity data from EM38 used for model establishment. Results show that, firstly, the correlation coefficient of multivariate regression model reached up to 0.91, and indicated electromagnetic induction technology can be used for the indirect monitoring of soil salinity in this area; secondly, first-order differential transformation is better than the second-order differential transformation, the spectrum transformed with first-order differential can better predict soil salinity; thirdly, the spectrum transformed with first-order differential has good performance in all the three established models, and the model with support vector machine has higher accuracy than the partial least square and multivariate stepwise regression models. Accordingly, the support vector machine regression model established with first order differentiation transformation can be used for as a desirable monitoring model for arid lakeside wetland soil salinization.
Keywords:soil salinization  electromagnetic induction technology  measured soil spectral  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国沙漠》浏览原始摘要信息
点击此处可从《中国沙漠》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号