首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia,Italy)
Authors:Franco Frau  Carla Ardau  Luca Fanfani
Institution:Dipartimento di Scienze della Terra, Via Trentino 51, 09127 Cagliari, Italy;Department of Earth Sciences, University of Cagliari, Italy;Department of Earth Sciences, University of Cagliari, Italy
Abstract:About a century of exploitation of the galena-arsenopyrite deposit of Baccu Locci in Sardinia (Italy) has caused a severe, persistent arsenic contamination that extends downstream from the mine for several kilometres. Differently from As, the contamination of lead in surface waters is only localised in the upper part of the mine despite very high Pb concentrations in geologic materials (waste rocks, tailings, stream sediments, soils) over the whole Baccu Locci stream catchment. The aqueous and solid speciation of Pb in various environmental media of the Baccu Locci system was determined by means of a combined analytical (ICP-MS, SEM-EDX, TEM-EDX, chemical extraction) and thermodynamic approach (PHREEQC). The study has pointed out that relatively little Pb (up to 30 µg/L) is initially released to surface waters (pH = 7–8, Eh = 0.4–0.6 V) very rapidly due to dissolution of anglesite that is the first product of galena oxidation. Subsequently, Pb is removed (down to 0.6 µg/L) by probable sorption onto hydrous ferric oxides (e.g. ferrihydrite) and/or possible precipitation of As-containing plumbojarosite that is the main secondary Pb-bearing phase in stream sediments/tailings along the Baccu Locci stream course. The latter hypothesis is controversial since it is reported from the literature that plumbojarosite is formed under acidic conditions, although there is contrary field evidence as well. Bearing in mind the uncertainties introduced from thermodynamic and analytical data, the solubility calculations indicate strong undersaturation of surface waters with respect to plumbojarosite (SI: ? 19.9 to ? 3.7). On the contrary arsenatian plumbojarosite is at or close to saturation (SI: ? 0.6 to 3.2) in most surface waters and beudantite is clearly above saturation (SI: 4.1 to 12.7). This suggests that the incorporation of As might increase the stability of plumbojarosite, extending it up to near-neutral conditions. As a consequence, Pb is prevented from being released downstream to surface waters, and dissolved Pb concentrations remain definitely below the Italian and WHO limits for drinking waters (50 µg/L and 10 µg/L, respectively).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号