Advances in understanding the Kombolgie Subgroup and unconformity-related uranium deposits in the Alligator Rivers Uranium Field and how to explore for them using lithogeochemical principles |
| |
Authors: | P. A. Polito T. K. Kyser P. Alexandre E. E. Hiatt C. R. Stanley |
| |
Affiliation: | 1. Anglo American Exploration (Australia) , PO Box 1067, Bentley DC, Bentley, WA, 6983, Australia;2. Department of Geological Sciences and Geological Engineering , Queen's University , Kingston, Ontario, Canada , K7L 3N6paulpolito@angloamerican.com.au;4. Department of Geological Sciences and Geological Engineering , Queen's University , Kingston, Ontario, Canada , K7L 3N6;5. Department of Geology , University of Wisconsin-Oshkosh , Oshkosh, WI, 54901, USA;6. Department of Geology , Acadia University , Wolfville, Nova Scotia, Canada , B4P 2R6 |
| |
Abstract: | The Alligator Rivers Uranium Field (ARUF) includes the mined and unmined Jabiluka, Ranger, Koongarra and Nabarlek unconformity-related uranium deposits and several small prospects including the newly discovered King River prospect. Uranium mineralisation is hosted by a variety of metamorphosed Nimbuwah Domain lithologies that are unconformably overlain by the Kombolgie Subgroup, a basin package of unmetamorphosed arenites and mafic volcanics. All of the uranium deposits and prospects preserve an identical alteration assemblage that is subdivided into a distal and proximal alteration zone. The distal alteration zone comprises an assemblage of sericite and chlorite that replace albite and amphibole. In some cases, this alteration can be traced >1000 m from the proximal alteration zone that is dominated by uraninite, hematite, chlorite and sericite. Uranium precipitated in the basement as uraninite at 1680 Ma at around 200°C from a fluid having δ18Ofluid values of 3.0±2.8‰ and δDfluid values of ?28±13‰ VSMOW reflecting an evolved marine source. These geochemical properties are indistinguishable from those recorded by diagenetic illite and chlorite that were collected from the Kombolgie Subgroup sandstones across the ARUF. The illite and chlorite formed in diagenetic aquifers, and where these aquifers intersected favourable basement rocks, such as those containing graphite or other reductants, U was precipitated as uraninite. Therefore, it is proposed that the Kombolgie Subgroup is the source for fluids that formed the deposits. A post-ore alteration assemblage dominated by chlorite, but also comprising quartz±dolomite±sulfide veins cut the uranium mineralisation at all deposits and has historically been recorded as part of the syn-ore mineralisation event. However, these minerals formed anywhere between 1500 to 630 Ma from fluids that have distinctly lower δ18Ofluid values around 1.5‰ and lower δDfluid values around ?45‰ reflecting a meteoric water origin. Despite unconformity-related uranium deposits having a large alteration halo, they remain difficult to find. The subtle alteration of albite to sericite several hundred metres from mineralisation occurs in isolation of any increase in trace elements such as U and radiogenic Pb and can be difficult or impossible to identify in hand specimen. Whole rock geochemical data indicate that Pearce Element Ratio (PER) analysis and General Element Ratio (GER) analysis may vector into this subtle alteration because it does not rely on an increase in trace elements to identify proximity to ore. PER and GER plots, Al/Ti vs (2Ca + Na + K)/Ti, Na/Al vs (Na + K)/Al, K/Al vs (Na + K)/Al and (Fe + Mg)/Al vs (Na + K)/Al provide a visual guide that readily distinguish unaltered from altered samples. A plot of (Na + K)/Al and (Fe + Mg)/Al on the x-axis against the concentration of trace elements on the y-axis reveals that U, Pb, Mo, Cu, B, Br, Ce, Y, Li, Ni, V and Nd are associated with the most intensely altered samples. The lithogeochemical vectors should aid explorers searching for uranium mineralisation in a prospective basin environment, but exploration must first focus on the characteristics of the basin to assess its mineralisation potential. A holistic model that describes the evolution of the Kombolgie Subgroup from deposition through diagenesis to formation of the uranium deposits in the underlying basement rocks is presented and has application to other basins that are considered prospective for unconformity-related uranium deposits. The model outlines that explorers will need to consider the thickness of the sedimentary pile, its lithological composition relative to depositional setting, the depth to which the sediments were buried during diagenesis and the degree of diagenesis achieved, which may be time dependant, before deciding on the prospectivity of the basin. |
| |
Keywords: | Uranium unconformity Jabiluka Ranger King River Nabarlek lithogeochemistry Pearce Element Ratios Kombolgie Subgroup Australia |
|
|