首页 | 本学科首页   官方微博 | 高级检索  
     


TIME-DISTANCE HELIOSEISMOLOGY WITH THE MDI INSTRUMENT: INITIAL RESULTS
Authors:Duvall  T. L.  Scherrer  P. H.  Bogart  R. S.  Bush  R. I.  De forest  C.  Hoeksema  J. T.  Schou  J.  Saba  J. L. R.  Tarbell  T. D.  Title  A. M.  Wolfson  C. J.  Milford  P. N.
Abstract:In time-distance helioseismology, the travel time of acoustic waves is measured between various points on the solar surface. To some approximation, the waves can be considered to follow ray paths that depend only on a mean solar model, with the curvature of the ray paths being caused by the increasing sound speed with depth below the surface. The travel time is affected by various inhomogeneities along the ray path, including flows, temperature inhomogeneities, and magnetic fields. By measuring a large number of times between different locations and using an inversion method, it is possible to construct 3-dimensional maps of the subsurface inhomogeneities. The SOI/MDI experiment on SOHO has several unique capabilities for time-distance helioseismology. The great stability of the images observed without benefit of an intervening atmosphere is quite striking. It has made it possible for us to detect the travel time for separations of points as small as 2.4 Mm in the high-resolution mode of MDI (0.6 arc sec pixel-1). This has enabled the detection of the supergranulation flow. Coupled with the inversion technique, we can now study the 3-dimensional evolution of the flows near the solar surface.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号