首页 | 本学科首页   官方微博 | 高级检索  
     检索      


3D MHD Coronal Oscillations about a Magnetic Null Point: Application of WKB Theory
Authors:J A McLaughlin  J S L Ferguson  A W Hood
Institution:1. School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife, KY16 9SS, UK
Abstract:This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit’s method and a Runge?–?Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B=x,ε y,?(ε+1)z]. Under our cold-plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfvén waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point and that the effect of this refraction depends upon the Alfvén speed profile. The wave and thus the wave energy accumulate at the null point. We have found that current buildup is exponential and the exponent is dependent upon ε. Thus, for the fast wave there is preferential heating at the null point. For the Alfvén wave, we find that the wave propagates along the field lines. For an Alfvén wave generated along the fan plane, the wave accumulates along the spine. For an Alfvén wave generated across the spine, the value of ε determines where the wave accumulation will occur: fan plane (ε=1), along the x-axis (0<ε<1) or along the y-axis (ε>1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号