首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Focal process of the great Chilean earthquake May 22, 1960
Authors:Hiroo Kanamori  John J Cipar
Institution:Seismological Laboratory, California Institute of Technology, Pasadena, Calif. U.S.A.
Abstract:Long-period strain seismogram recorded at Pasadena is used to determine the focal process of the 1960 Chilean earthquake. Synthetic seismograms computed for various fault models are matched with the observed strain seismogram to determine the fault parameters. A low-angle (~ 10°) thrust model with rupture length of 800 km and rupture velocity of 3.5 km/sec is consistent with the observed Rayleigh/Love wave ratio and the radiation asymmetry. A seismic moment of 2.7 · 1030 dyn · cm is obtained for the main shock. This value, together with the estimated fault area of 1.6 · 105 km2, gives an average dislocation of 24 m. The strain seismogram clearly shows unusually long-period (300–600 sec) wave arriving at the P time of a large foreshock which occurred about 15 minutes before the main shock, suggesting a large slow deformation in the epicentral area prior to the major failure. A simple dislocation model shows that a dislocation of 30 m, having a time constant of 300–600 sec, over a fault plane of 800 × 200 km2 is required to explain this precursory displacement. The entire focal process may be envisaged in terms of a large-scale deformation which started rather gradually and eventually triggered the foreshocks and the “main” shock. This mechanism may explain the large premonitory deformations documented, but not recorded instrumentally, for several Japanese earthquakes. The moments of the main shock and the precursor add to 6 · 1030 dyn · cm which is large enough to affect the earth's polar motion.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号