首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The 6300 Å O1D airglow and dissociative recombination
Authors:VB Wickwar  LL Cogger  HC Carlson
Institution:Stanford Research institute, Menlo Park, California, U.S.A.;University of Calgary, Calgary, Alberta, Canada;Arecibo Observatory, Puerto Rico
Abstract:Measurements of night-time 6300 Å airglow intensities at the Arecibo Observatory have been compared with dissociative recombination calculations based on electron densities derived from simultaneous incoherent backscatter measurements. The agreement indicates that the nightglow can be fully accounted for by dissociative recombination. Thecomparisons are examined to determine the importance of quenching, heavy ions, ionization above the F-layer peak, and the temperature parameter of the model atmosphere. Comparable fits between the observed and calculated intensities are found for several available model atmos- pheres (e.g. CIRA, Jacchia). The least-squares fitting process, used to make the comparisons, produces comparable fits over a wide range of combinations of neutral densities and of reaction constants. Yet, the fitting places constraints upon the possible combinations: these constraints indicate that the latest laboratory chemical constants and densities extrapolated to a base altitude are mutually consistent. However, by imposing an additional constraint, an aero- nomically derived preference is given for about one O(1D) per combination. A preference is also given for the lower base densities of O2 derived from rockets rather than from models. Altitude profiles for the 6300 Å and 5577 Å emissions are deduced. In the early evening, there are no large discrepancies in the fits that might indicate an effect from elicited states of O+, vibrational excitation of O2, or both. The technique of comparing observed and cal- culated 6300 Å intensities has considerable potential as an aeronomical tool for examination of other possible sources of emission and for determination of relative changes in the neutral atmosphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号