首页 | 本学科首页   官方微博 | 高级检索  
     

高分辨率遥感影像建筑物提取多路径RSU网络法
引用本文:张玉鑫,颜青松,邓非. 高分辨率遥感影像建筑物提取多路径RSU网络法[J]. 测绘学报, 2022, 51(1): 135-144. DOI: 10.11947/j.AGCS.2021.20200508
作者姓名:张玉鑫  颜青松  邓非
作者单位:武汉大学测绘学院, 湖北 武汉 430079
基金项目:四川省科技计划(2019YFG0460)~~;
摘    要:针对卷积神经网络在提取建筑物的过程中,存在建筑物边界不准确和建筑物内部空洞等问题,提出以RSU模块(residual U-block)为核心的MPRSU-Net (multi-path residual U-block network)。该模块利用编码器-解码器结构和残差连接,实现了局部特征和多尺度特征的融合。由于一个RSU模块提取的信息有限,MPRSU-Net进一步通过多路径结构并行了不同尺度的RSU模块,并在这些模块之间进行信息交换,提高了特征聚集效率。在分辨率为0.3 m的WHU和Inria建筑物数据集上进行试验,精度分别达95.65%和88.63%,IoU分别达91.17%和79.31%,验证了本文方法的有效性。此外,本文方法相较于U2Net,计算量明显降低,模型参数量减少68.63%,表明本文方法具有一定的应用价值。

关 键 词:高分辨率遥感影像  建筑物提取  多尺度  卷积神经网络  多路径  
收稿时间:2020-10-14
修稿时间:2021-07-21

Multi-path RSU network method for high-resolution remote sensing image building extraction
ZHANG Yuxin,YAN Qingsong,DENG Fei. Multi-path RSU network method for high-resolution remote sensing image building extraction[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 135-144. DOI: 10.11947/j.AGCS.2021.20200508
Authors:ZHANG Yuxin  YAN Qingsong  DENG Fei
Affiliation:School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
Abstract:Inaccurate boundaries and holes are two major problems when extracting buildings from high-resolution remote sensing images by a convolution network.To solve these problems,we proposed the MPRSU-Net(multi-path residual U-block network),which is based on the RSU(residual U-block).The RSU is able to fuse local features and multi-scale features,with the help of the encoder-decoder structure and the residual connection.However,a single RSU is not enough to gather enough information,MPRSU-Net parallels RSU blocks of different scales by the multi-path structure and exchanges information among these blocks to further enhance the feature aggregation efficiency.Experimental results showed that the MPRSU-Net achieved 95.65%,88.63%precision,and 91.17%,79.31%IoU on 0.3 m resolution WHU and Inria building datasets,which showed the effectiveness of the proposed method.In addition,compared with the U2Net,MPRSU-Net is much lighter in computation and reduces the amount of model parameters by 68.63%,demonstrating that the method has some application value.
Keywords:high-resolution remote sensing image  building extraction  multi-scale  convolutional neural networks  multi-path
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号