首页 | 本学科首页   官方微博 | 高级检索  
     


Joint multivariate statistical model and its applications to the synthetic earthquake prediction
Abstract:Considering the problems that should be solved in the synthetic earthquake prediction at present, a new model is proposed in the paper. It is called joint multivariate statistical model combined by principal component analysis with discriminatory analysis. Principal component analysis and discriminatory analysis are very important theories in multivariate statistical analysis that has developed quickly in the late thirty years. By means of maximization information method, we choose several earthquake prediction factors whose cumulative proportions of total sample variances are beyond 90% from numerous earthquake prediction factors. The paper applies regression analysis and Mahalanobis discrimination to extrapolating synthetic prediction. Furthermore, we use this model to characterize and predict earthquakes in North China (30°~42°N, 108°~125°E) and better prediction results are obtained.
Keywords:joint multivariate statistical model  principal component analysis  discriminatory analysis  synthetic earthquake predication
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号