首页 | 本学科首页   官方微博 | 高级检索  
     


Modern microbialites and their environmental significance, Meiji reef atoll, Nansha (Spratly) Islands, South China Sea
Authors:JianWei Shen and Yue Wang
Affiliation:(1) Department of Marine Geology, South China Sea Institute of Oceanology, Guangzhou, China;(2) Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology and Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510301, China;(3) Graduate University of the Chinese Academy of Sciences, Beijing, 100049, China
Abstract:Meiji (Mischief) coral atoll, in Nansha (Spratly) Islands, South China Sea, consists of an annular reef rim surrounding a central lagoon. On the atoll rim there are either protuberant 'motu' (small coral patch reefs on the rim of atoll) islets or lower sandy cays that contain modern microbialite deposits on the corals in pinnacles and surrounding bottoms of the atoll. Microbialites, including villiform, hairy, and thin spine growth forms, as well as gelatinous masses, mats and encrustation, developed on coral colonies and atoll rim sediments between 0 and 15 m deep-water settings. The microbialites were produced by natural populations of filamentous cyanobacteria and grew on (1) bulbous corals together with Acropora sp., (2) on massive colonies of Galaxea fascicularis, (3) on dead Montipora digitata, and (4) on dead Acropora teres, some hairy microbialite growing around broken coral branches. This study demonstrates that microbial carbonates are developed in coral reefs of South China Sea and indicates that microbial processes may be important in the construction of modern reef systems. The results have significance in the determination of nature and composition in microorganisms implied in the formation ancient microbialites, and permit evaluation of the importance of microbial deposits in mo-dern coral reefs and of 'microbialites' in biogeochemical cycles of modern coral reef systems. The re-sults also provide evidence of modern analogues for ancient microbialites in shallow-water settings, and combine with sedimentological studies of ancient microbialites to understand their controls.
Keywords:Microbialite   Meiji reef   Nansha Island   South China Sea
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号