首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Early evolution and transformation of organic matter in the active continental Jordan Rift Valley
Authors:Amos Bein
Abstract:A sequence of alternating lacustrine marls, peat and basalts was penetrated in the Notera-3 well in the northern part of the Jordan Rift, Israel. The 2781 m thick sequence, ranges from Upper Miocene to Recent, reflects high sedimentation rate in the active continental rift associated with the Dead Sea Transform. The deep burial and the relatively high geothermal gradient (40°C km−1) compensate for the short time span so that coalification expressed by vitrinite reflectance consistently increases with depth, from about 0.32% Ro at 1040 m to 0.48% Ro at 2495 m.Analysis of the peat reveals that the O/C, S/C and δ13C of the humic acids (HA) and the heavy to light normal alkane ratios are the only parameters sensitive enough to express this slight maturation increase with depth. A sharp δ13C change from about − 18‰ prevailing in the uppermost meters to an average of − 27.5‰ at 15 m and deeper reflects a change in the higher plant source of the peat (from C4 to C3 plants) rather than an early diagenetic modification.The δ13C, O/C, S/C and N/C ratios are usually lower in the kerogens than in the corresponding HA. The decrease in the δ13C and the O/C ratios are explained by elimination of oxygen-containing functional groups during transformation and by polymerization effects. The gradual decrease in the 12C and the O/C of the HA with depth are attributed to decarboxylation coupled with kinetic effects. The N/C depletion during the transformation from HA to kerogens probably results from the breakdown of amino acids. The S/C ratio which decreases both during this transformation and also with maturation is most readily explained by the breakdown of ester sulfate-containing groups such as sulfated polysaccarids, which formed diagenetically during the humification process.
Keywords:peat  humic acids  kerogens  continental rift
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号