首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic discretization method for solving Kepler’s equation
Authors:Scott A. Feinstein  Craig A. McLaughlin
Affiliation:(1) Department of Space Studies, University of North Dakota, 11 Corey Drive, Peabody, MA 01960, USA;(2) Department of Space Studies, University of North Dakota, Clifford Hall Room 530, 4149 University Ave., Stop 9008, Grand Forks, ND 58202-9008, USA
Abstract:Kepler’s equation needs to be solved many times for a variety of problems in Celestial Mechanics. Therefore, computing the solution to Kepler’s equation in an efficient manner is of great importance to that community. There are some historical and many modern methods that address this problem. Of the methods known to the authors, Fukushima’s discretization technique performs the best. By taking more of a system approach and combining the use of discretization with the standard computer science technique known as dynamic programming, we were able to achieve even better performance than Fukushima. We begin by defining Kepler’s equation for the elliptical case and describe existing solution methods. We then present our dynamic discretization method and show the results of a comparative analysis. This analysis will demonstrate that, for the conditions of our tests, dynamic discretization performs the best.
Keywords:Kepler’  s equation  Elliptical motion  Dynamic programming
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号