首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multibody dynamics of floating wind turbines with large-amplitude motion
Institution:1. Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece;2. Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece;3. Department of Civil Engineering, Istanbul Kultur University, Istanbul 34156, Turkey;4. Division of Hydraulics, Civil Engineering Faculty, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
Abstract:A new approach to multibody dynamics is investigated by treating floating wind turbines as multibody systems. The system is considered as three rigid bodies: the tower, nacelle and rotor. Three large-amplitude rotational degrees of freedom (DOFs) of the tower are described by 1-2-3 sequence Euler angles. Translation of the entire system is described by Newton’s second Law applied to the center of mass (CM) of the system and transferred to 3 translational DOFs of the tower. Additionally, two prescribed DOFs governed by mechanical control, nacelle yaw and rotor spin, are combined with the 6 DOFs of the tower to formulate the 8-DOF equations of motion (EOMs) of the system. The CM of the system is generally time-varying and not constrained to any rigid body due to the arbitrary location of the CM of each body and relative mechanical motions among the bodies. The location of the CM being independent of any body is considered in both the solution to 3 translational DOFs and the calculation of angular momentum of each body for 3 rotational DOFs. The theorem of conservation of momentum is applied to the entire multibody system directly to solve 6 unknown DOFs. Motions computed using the six nonlinear EOMs are transformed to each body in a global coordinate system at every time-step for use in the computation of hydrodynamics, aerodynamics and restoring forcing, which preserves the nonlinearity between external excitation and structural dynamics. The new method is demonstrated by simulation of the motion of a highly compliant floating wind turbine. Results are verified by critical comparison with those of the popular wind turbine dynamics software FAST.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号