首页 | 本学科首页   官方微博 | 高级检索  
     检索      

LATE QUATERNARY ENVIRONMENTAL CHANGES IN THE ANTARCTIC AND THEIR CORRELATION WITH GLOBAL CHANGE
作者姓名:Zhang  Qingsong
作者单位:Institute of Geography,CAS,Beijing 100101People's Republis of China
摘    要:TheAnturCticisoneofthemostimpohantcoldsourcesonEarth,asabout24.5xlo'km'oficewhichtakes9opeamtoftotalicevolumeontheglobecoveronit.RotreaoradvanceOftheAntarcticIceSheetwillaffatfluCtuationofsealevel.ItiscalculatalthatiftheAntercticIceSheetlscomplotelymeltaw…


LATE QUATERNARY ENVIRONMENTAL CHANGES IN THE ANTARCTIC AND THEIR CORRELATION WITH GLOBAL CHANGE
Zhang,Qingsong.LATE QUATERNARY ENVIRONMENTAL CHANGES IN THE ANTARCTIC AND THEIR CORRELATION WITH GLOBAL CHANGE[J].Journal of Geographical Sciences,1995(2).
Authors:Zhang  Qingsong
Abstract:Two ingressions occurred in the last glacial interstadial (50,00-25,000 a BP) and Holocene optimum (7,500-5,000 a BP) periods in Antercticregion. The grea expansion of Antarcic Ice Sheet appeared at last glacialmaximum (18,000 a BP) when Antarctic sea level was 100- 150 m lower thanthat at presat. Three times of glacial advances and rotreas occurred on thefront of Antarctic Ice Shed since 3,000 a BP. All these phenomena werecoordinated with global changes. In the past decades, records from Antercticice-free areas and ice cores testified that mvironmedl and climatic changesin Antarctic region have been coordinated with global changes since latePlelstocene. In the past decades, Antarctic inland was a little warming up andthe fron of the ice shed was slowly melting and ratreating due to the increaseof CO2 content in the atmosphere. The greenhouse effect will cause AntercticIce Sheet (especially on the ice shelves) to be partly melting away, but can notdestroy it. In this case the amplitude of sea level rise caused by the melting ofAntarctic ice will be less than 0.2 m within the coming five decades.
Keywords:the Antarctica  late Quatenary environment  global change
本文献已被 CNKI 等数据库收录!
点击此处可从《地理学报(英文版)》浏览原始摘要信息
点击此处可从《地理学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号