首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Amplification of ground motion and waveform complexity in fault zones: examples from the San Andreas and Calaveras Faults
Authors:V F Cormier  P Spudich
Institution:Earth Resources Laboratory. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Combridge. MA 02139, USA;US Geological Survey, 345 Middlefield Road, MS 77, Menlo Park, CA 94025. USA
Abstract:Summary. P -wave seismograms at ranges less than 10 km are synthesized by asymptotic ray theory and by summation of Gaussian beams for point sources located in a low-velocity wedge surrounding a fault. The computations are performed using models of the wedge inferred from the analysis of reflection and refraction experiments across the San Andreas and Hayward-Calaveras faults. Calculations in these models show that the 10–20Hz vertical displacements of earthquakes located at 3–10km depth are amplified by up to an order of magnitude in a 1–2km wide region centred on the fault trace compared to displacements predicted by laterally homogeneous models of the crust. This amplification is not cancelled by high attentuation in the fault zone and compensates for the reduction in amplitudes directly above the source predicted from the radiation pattern of a strike-slip earthquake. Depending on the source depth of the earthquake and the structure and velocity contrast of the wedge, multiple triplications in the travel-time curve of direct P - and S -waves will occur at stations in the fault zone. A wedge model successfully predicts the triplications observed in the P waveforms of aftershocks of the Coyote Lake earthquake recorded in the fault zone, showing that body waves from microearthquakes can be used to determine the three-dimensional velocity structure of the fault zone. The amplification, waveform complexity, and distortion of ray paths introduced by the low- velocity wedge suggest that its effects should be included in the interpretation of strong ground motions and travel times observed in the fault zone. For realistic models of the wedge, asymptotically approximate methods of calculating the body waveforms are strictly valid for frequencies greater than 20Hz. Numerical methods may be necessary to calculate accurately the wavefield at lower frequencies.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号