首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geology and geochemistry of the Bingdaban ophiolitic mélange in the boundary fault zone on the northern Central Tianshan Belt,and its tectonic implications
Authors:Dong YunPeng  Zhang GuoWei  Zhou DingWu  Luo JinHai  Zhang ChengLi  Xia LinQi  Xu XueYi  Li XiangMin
Institution:(1) The Key Laboratory of Continental Dynamics, Ministry of Education, Department of Geology, Northwest University, Xi’an, 710069, China;(2) Shandong University of Science and Technology, Qingdao, 266510, China;(3) Xi’an Institute of Geology and Mineral Resources, China Geological Survey, Xi’an, 710054, China
Abstract:The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb, La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source, and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB. The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage. Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22)
Keywords:geochemistry  ophiolite  suture zone  Bingdaban  Tianshan orogenic belt
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号