首页 | 本学科首页   官方微博 | 高级检索  
     

基于Shearlet变换的非局部均值地震噪声压制
引用本文:王金刚, 安勇, 徐振旺. 2023. 基于Shearlet变换的非局部均值地震噪声压制. 物探与化探, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630
作者姓名:王金刚  安勇  徐振旺
作者单位:1.中国石油大学(北京) 油气资源与探测国家重点实验室,北京 102249;;; 2.中国石油大学(北京) 地球物理学院,北京 102200;;; 3.中国石油天然气股份有限公司辽河油田分公司 勘探开发研究院,辽宁 盘锦 124010
基金项目:国家自然科学基金项目(U1562110) 中国石油物探技术攻关项目(2016-03-02) 辽河油田千万吨稳产关键技术研究与应用项目(2017E-1602)
摘    要:在地震勘探中,由于野外地震数据采集环境及仪器性能本身的限制,采集到地震信号中不可避免地会混入较强的噪声,极大影响后续处理、解释工作。而近几年,多尺度几何分析方法以其独特优势成为压制噪声的研究热点,本文提出在Shearlet域中引入非局部均值算法对地震噪声进行压制,该算法首先对地震信号进行非下采样Shearlet变换,然后采用非局部均值法对分解后系数子集进一步处理,并采用8个Sobel算子近似表示全方向结构,对权重函数进行改进,最后对系数进行Shearlet反变换,得到去噪后的地震信号。实验结果表明相比于传统非局部均值法,该联合算法能有效地压制随机噪声,同时对弱同相轴具有更好的保护作用,在地震资料处理中具有良好的实用性。

关 键 词:; 随机噪声; Shearlet变换; Sobel算子; 非局部均值; 保结构
收稿时间:2021-12-26
修稿时间:2023-02-20

Seismic noise suppression using non-local means algorithm based on the Shearlet transform
WANG Jin-Gang, AN Yong, XU Zhen-Wang. 2023. Seismic noise suppression using non-local means algorithm based on the Shearlet transform. Geophysical and Geochemical Exploration, 47(1): 199-207. doi: 10.11720/wtyht.2023.2630
Authors:WANG Jin-Gang  AN Yong  XU Zhen-Wang
Affiliation:1. State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum,Beijing 102249,China;;; 2. College of Geophysics,China University of Petroleum,Beijing 102200,China;;; 3. Research Institute of Petroleum Exploration and Development,Liaohe Oilfield Company,PetroChina,Panjin 124010,China
Abstract:Owing to the limitations of both the field environment for seismic data acquisition and the performance of instruments,the seismic signals collected in seismic exploration are inevitably mixed with strong noise,thus greatly affecting the subsequent processing and interpretation.In recent years,multi-scale geometric analysis methods have become an important topic in noise suppression owing to their unique advantages.This study proposed suppressing the seismic noise using a non-local mean (NLM) algorithm in the Shearlet domain.First,the non-subsampled Shearlet transform (NSST) was performed for seismic signals.Then,the decomposed coefficient subset was further processed using the NLM method,and the weight function was improved by using eight Sobel operators to approximate the omnidirectional structure.Finally,the inverse Shearlet transform was performed for the coefficients to obtain the denoised seismic signals.Experimental results show that this combined algorithm can effectively suppress the random noise and preserve the weak events,thus showing high practicability in the seismic data processing.
Keywords:random noise  Shearlet transform  Sobel operator  non-local mean  structure preservation
点击此处可从《物探与化探》浏览原始摘要信息
点击此处可从《物探与化探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号