首页 | 本学科首页   官方微博 | 高级检索  
     检索      


One to One Resonance at High Inclination
Authors:R Brasser  D C Heggie  S Mikkola
Institution:(1) Tuorla Observatory, University of Turku, 21500 Piikkiö, Finland;(2) School of Mathematics, Kingrsquos Buildings, University of Edinburgh, Edinburgh, EH9 3JZ, UK
Abstract:We report results from long term numerical integrations and analytical studies of particular orbits in the circular restricted three-body problem. These are mostly high-inclination trajectories in 1 : 1 resonance starting at or near the triangular Lagrangian L5 point. In some intervals of inclination these orbits have short Lyapunov times, from 100 to a few hundred periods, yet the osculating semi-major axis shows only relatively small fluctuations and there are no escapes from the 1 : 1 resonance. The eccentricity of these chaotic orbits varies in an erratic manner, some of the orbits becoming temporarily almost rectilinear. Similarly the inclination experiences large variations due to the conservation of the Jacobi constant. We studied such orbits for up to 109 periods in two cases and for 106 periods in all others, for inclinations varying from 0° to 180°. Thus our integrations extend from thousands to 10 million Lyapunov times without escapes of the massless particle. Since there are no zero-velocity curves restricting the motion this opens questions concerning the reason for the persistence of the 1 : 1 resonant motion. In the theory sections we consider the mechanism responsible for the observed behavior. We derive the averaged 1 : 1 resonance disturbing function, to second order in eccentricity, to calculate a critical inclination found in the numerical experiment, and examine motion close to this inclination. The cause of the chaos observed in the numerical experiments appears to be the emergence of saddle points in the averaged disturbing potential. We determine the location of several such saddle points in the (phgr, ohgr) plane, with phgr being the mean longitude difference and ohgr the argument of pericentre. Some of the saddle points are illustrated with the aid of contour plots of the disturbing function. Motion close to these saddles is sensitive to initial conditions, thus causing chaos.This revised version was published online in October 2005 with corrections to the Cover Date.
Keywords:1:1 resonance  Chaos  Co-orbital motion  high inclination  restricted three-body problem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号