首页 | 本学科首页   官方微博 | 高级检索  
     


Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions
Authors:Si Chen  Kai Zhao  Tao Jiang  Xiaofeng Li  Xingming Zheng  Xiangkun Wan  Xiaowei Zhao
Affiliation:1.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun,China;2.University of Chinese Academy of Sciences,Beijing,China;3.College of Geoexploration Science and Technology,Jilin University,Changchun,China
Abstract:Soil surface roughness, denoted by the root mean square height (RMSH), and soil moisture (SM) are critical factors that affect the accuracy of quantitative remote sensing research due to their combined influence on spectral reflectance (SR). In regards to this issue, three SM levels and four RMSH levels were artificially designed in this study; a total of 12 plots was used, each plot had a size of 3 m × 3 m. Eight spectral observations were conducted from 14 to 30 October 2017 to investigate the correlation between RMSH, SM, and SR. On this basis, 6 commonly used bands of optical satellite sensors were selected in this study, which are red (675 nm), green (555 nm), blue (485 nm), near infrared (845 nm), shortwave infrared 1 (1600 nm), and shortwave infrared 2 (2200 nm). A negative correlation was found between SR and RMSH, and between SR and SM. The bands with higher coefficient of determination R2 values were selected for stepwise multiple nonlinear regression analysis. Four characterized bands (i.e., blue, green, near infrared, and shortwave infrared 2) were chosen as the independent variables to estimate SM with R2 and root mean square error (RMSE) values equal to 0.62 and 2.6%, respectively. Similarly, the four bands (green, red, near infrared, and shortwave infrared 1) were used to estimate RMSH with R2 and RMSE values equal to 0.48 and 0.69 cm, respectively. These results indicate that the method used is not only suitable for estimating SM but can also be extended to the prediction of RMSH. Finally, the evaluation approach presented in this paper highly restores the real situation of the natural farmland surface on the one hand, and obtains high precision values of SM and RMSH on the other. The method can be further applied to the prediction of farmland SM and RMSH based on satellite and unmanned aerial vehicle (UAV) optical imagery.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号