首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation Correction Procedures for Water Vapour Fluxes from Closed-Path Eddy-Covariance Systems
Authors:Benjamin R. K. Runkle  Christian Wille  Michal Gažovič  Lars Kutzbach
Affiliation:1.Institute of Soil Science, Klima Campus,University of Hamburg,Hamburg,Germany;2.Institute for Botany and Landscape Ecology,Ernst Moritz Arndt University Greifswald,Greifswald,Germany
Abstract:Evapotranspiration is a source of water vapour to the atmosphere, and as a crucial indicator of landscape behaviour its accurate measurement has widespread implications. Here we investigate errors that are prevalent and systematic in the closed-path eddy-covariance measurement of latent heat flux: the attenuation of fluxes through dampened cospectral power at high frequencies. This process is especially pronounced during periods of high relative humidity through the adsorption and desorption of water vapour along the tube walls. These effects are additionally amplified during lower air temperature conditions. Here, we quantify the underestimation of evapotranspiration by a closed-path system by comparing its flux estimate to simultaneous and adjacent measurements from an open-path sensor. We apply models relating flux loss to relative humidity itself, to the lag time of the cross-correlation peak between the water vapour and vertical wind velocity signals, and to models of cospectral attenuation relative to the cospectral power of simultaneous sensible heat-flux measurements. We find that including the role of temperature in modifying the attenuation–humidity relationship is essential for unbiased flux correction, and that physically based cospectral attenuation methods are effective characterizers of closed-path instrument signal loss relative to the unattenuated flux value.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号