首页 | 本学科首页   官方微博 | 高级检索  
     


An Analytical Model for Mean Wind Profiles in Sparse Canopies
Authors:Weiguo Wang
Affiliation:1.IMSG@NCEP/NOAA,Camp Springs,USA
Abstract:Existing analytical models for mean wind profiles within canopies are applicable only in dense canopy scenarios, where all momentum is absorbed by canopy elements and, hence, the effect of the ground on turbulent mixing is not important. Here, we propose a new analytical model that can simulate mean wind profiles within sparse canopies under neutral conditions. The model adopts a linearized canopy-drag parametrization and a first-order turbulence closure scheme taking into account the effects of both the ground and canopy elements on turbulent mixing. The resulting wind profile within a sparser canopy appears to be more like a logarithmic form, with the no-slip condition at the ground being satisfied. The analytical solution converges exactly to the standard surface-layer logarithmic wind profile in the case of zero canopy density (i.e., no-canopy scenario) and tends to be an exponential wind profile for a dense canopy; this feature is unique compared with existing analytical models for canopy wind profiles. Results from the new model are in good agreement with those from laboratory experiments and numerical simulations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号