首页 | 本学科首页   官方微博 | 高级检索  
     


A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
Authors:J. A. García  J. Martín  L. Naranjo
Affiliation:1. Departamento de Física, Universidad de Extremadura, Badajoz, Spain;2. Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Badajoz, Spain;3. Departamento de Matemáticas, Universidad de Extremadura, Badajoz, Spain;4. Instituto Universitario de Computación Científica Avanzada de Extremadura (ICCAEX), Universidad de Extremadura, Badajoz, Spain;5. Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
Abstract:A statistical study was made of the temporal trend in extreme rainfall in the region of Extremadura (Spain) during the period 1961–2009. A hierarchical spatio-temporal Bayesian model with a GEV parameterization of the extreme data was employed. The Bayesian model was implemented in a Markov chain Monte Carlo framework that allows the posterior distribution of the parameters that intervene in the model to be estimated. The results show a decrease of extreme rainfall in winter and spring and a slight increase in autumn. The uncertainty in the trend parameters obtained with the hierarchical approach is much smaller than the uncertainties obtained from the GEV model applied locally. Also found was a negative relationship between the NAO index and the extreme rainfall in Extremadura during winter. An increase was observed in the intensity of the NAO index in winter and spring, and a slight decrease in autumn.
Keywords:Bayesian hierarchical model  extreme rainfall  generalized extreme value distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号