首页 | 本学科首页   官方微博 | 高级检索  
     


Potential for photoenhanced toxicity of spilled oil in Prince William Sound and Gulf of Alaska waters
Authors:Barron M G  Ka'aihue L
Affiliation:P.E.A.K. Research, Longmont, CO 80501, USA. macebarron@hotmail.com
Abstract:Photoenhanced toxicity is the increase in the toxicity of a chemical in the presence of ultraviolet light (UV) compared to a standard laboratory test conducted with fluorescent lighting (minimal UV). Oil products, weathered oil, and specific polycyclic aromatic compounds present in oil are 2 to greater than 1000 times more toxic in the presence of UV. The photoenhanced toxicity of oil to fish and aquatic invertebrates appears to occur through a process of photosensitization, rather than photomodification of the aqueous phase oil. In photosensitization, the bioaccumulated chemical transfers light energy to other molecules causing toxicity through tissue damage rather than a narcosis mechanism. The available evidence indicates that phototoxic components of oil are specific 3-5 ring polycyclic aromatic hydrocarbons (PAHs) and heterocycles. Determinants of photoenhanced toxicity include the extent of oil bioaccumulation in aquatic organisms and the spectra and intensity of UV exposure. No studies have specifically investigated the photoenhanced toxicity of spilled oil in Alaska waters. Although there are substantial uncertainties, the results of this evaluation indicate there is potential for photoenhanced toxicity of spilled oil in Prince William Sound and the Gulf of Alaska. The potential hazard of photoenhanced toxicity may be greatest for embryo and larval stages of aquatic organisms that are relatively translucent to UV and inhabit the photic zone of the water column and intertidal areas. Photoenhanced toxicity should be considered in oil spill response because the spatial and temporal extent of injury to aquatic organisms may be underestimated if based on standard laboratory bioassays and existing toxicity databases. Additionally, the choice of counter measures and oil removal operations may influence the degree of photoenhanced toxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号