首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids
Authors:Janet Riedl  Stefanie Rotter  Sonja Faetsch  Mechthild Schmitt-Jansen  Rolf Altenburger
Institution:1. Helmholtz-Centre for Environmental Research-UFZ, Permoserstr. 15, 04318, Leipzig, Germany
Abstract:Hydraulic fracturing is increasingly being used to produce gas from unconventional resource sites for energy supply. Therefore, concerns about risks of this technology related to human health and the environment have to be addressed. Among the major issues is the potential contamination of surrounding water systems by chemical additives used in fracturing fluids. In this study, the ecotoxicological hazards of fracturing fluids, both, their individual components (chemicals) as well as their mixtures (product) were assessed using a component-based mixture approach. For five exemplary fracturing fluids, 40–90 wt% of the contained substances could unambiguously be defined in their chemical identity. The concentrations used in the applied fluid mixture were considered as (maximum) exposure concentrations. For components with mass fractions between 10 and 74 wt%, the effect concentrations for acute and chronic toxicity of fish, daphnia and algae were retrieved from experimental databases and through predictive modeling. The hazard indices calculated from the ratio of exposure to effect concentration were >1 for all fracturing fluids, using different scenarios. This indicated a hazard from the undiluted fracturing fluids. The assessment framework presented in this study allows for dealing with data gaps and uncertainties in a tiered fashion and in particular accommodates for combined effects resulting from chemical mixtures. It might be employed for ecotoxicological risk assessment of products containing chemical mixtures and optimization of their environmental performance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号