首页 | 本学科首页   官方微博 | 高级检索  
     


Eutectic between wollastonite II and calcite contrasted with thermal barrier in MgO-SiO2-CO2 at 30 kilobars,with applications to kimberlite-carbonatite petrogenesis
Authors:Wuu-Liang Huang  P.J. Wyllie
Affiliation:Department of the Geophysical Sciences, University of Chicago, Chicago, Ill. U.S.A.
Abstract:In the join CaCO3-CaSiO3 at 30 kbars, calcite melts at 1615°C, wollastonite II at 1600°C, and a binary eutectic occurs at 1365°C with liquid composition 43 wt.% CaCO3, 57 wt.% CaSiO3. The eutectic liquid quenches to a glass with few quench crystals. In the join MgCO3-MgSiO3 at 30 kbars, magnesite melts at 1590°C, enstatite at 1837°C, and the fields for the primary crystallization of magnesite and enstatite are separated by a thermal barrier near 1900°C for the melting of forsterite in the presence of CO2. Only about 10 wt.% MgSiO3 dissolves in the carbonate liquid. These data, are considered together with incomplete results for joins CaMgSi2O6-CaMg(CO3)2, CaMgSi2O6-MgCO3, CaMgSi2O6-CaCO3, and other published data in the system CaO-MgO-SiO2-CO2. A thermal barrier separates the silicate and carbonate liquids in MgO-SiO2-CO2 but, in the quaternary system, silicate liquids with dissolved CO2 can follow fractionation paths around the forsterite field to the fields for the primary crystallization of carbonates. This suggests that fractional crystallization of CO2-bearing ultrabasic magma at 100 km depth can produce residual carbonatite magma.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号