首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace elements in sub-alpine forest soils on the eastern edge of the Tibetan Plateau,China
Authors:Xiaodan Wang  Genwei Cheng  Xianghao Zhong  Mai-He Li
Institution:(1) Institute of Mountain Hazards and Environment, Chinese Academy of Science, R.d, No. 9, Section 4 of Renming South, 610041 Chengdu, China;(2) Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
Abstract:Industrial development has increased fast in China during the last decades. This has led to a range of environmental problems. Deposition of trace elements to forest ecosystems via the atmosphere is one potential problem. In this paper, we report the results from a pilot study where the trace element levels of the sub-alpine forest soils on the eastern edge of the Tibetan Plateau have been measured. Possible relationships between soil properties and trace element concentrations have also been investigated. The obtained concentrations (mg kg−1) were boron (B) 48.06–53.70, molybdenum (Mo) 1.53–2.26, zinc (Zn) 68.18–79.53, copper (Cu) 36.81–42.44, selenium (Se) 0.33–0.49, cadmium (Cd) 0.16–0.29, lead (Pb) 25.80–30.71, chromium (Cr) 96.10–110.08, nickel (Ni) 30.16–45.60, mercury (Hg) 0.05–0.11, and arsenic (As) 3.09–4.17. With a few exceptions, the element concentration can be characterized as low in the investigated sub-alpine forest soils. No clear differences in trace element levels were found between topsoil and subsoil samples, indicating that the atmospheric deposition of trace element has been low. The soil parent material plays a key role to determine trace element levels. Soil properties, including pHw, organic carbon (OC), clay fraction, cation-exchange capacity (CEC), total iron (Fe), and total aluminum (Al) concentrations were related to trace element concentration using correlation analysis. Total Fe and Al showed the strongest relationships with concentrations of most trace elements in the sub-alpine forest soils. PCA analyses indicated that a significant increase in the number of cars with the fast development of local tourism may result in higher Pb concentration in the future.
Keywords:Sub-alpine forest soils  Tibetan Plateau  Trace element  Soil properties
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号