摘 要: | 集合卡尔曼滤波资料同化方法,可以用集合样本统计出随天气形势变化的误差协方差,是当前资料同化领域的研究热点。主要介绍了GRAPES集合卡尔曼滤波资料同化系统的设计以及初步的试验结果。针对集合卡尔曼滤波同化实际观测资料难以实施的问题,采用成批观测同化的顺序同化方法进行多变量的集合卡尔曼滤波同化;为了滤除有限集合数造成的误差相关噪音和缓解求逆矩阵不满秩的问题,在水平和垂直方向都采用了Schur滤波;建立了与GRAPES预报模式的垂直坐标和预报变量一致的模式面集合卡尔曼滤波系统;集合样本的生成考虑了模式变量的空间相关和模式变量之间的相关,通过利用三维变分分析中的控制变量变换得到模式变量扰动场。通过比较GRAPES集合卡尔曼滤波资料同化系统和GRAPES区域三维变分资料同化系统的单点观测资料同化分析结果,对比背景误差相关系数的分布,验证了GRAPES集合卡尔曼滤波系统的正确性。此外,同化区域探空观测资料试验结果表明,GRAPES集合卡尔曼滤波资料同化系统能够得到合理的分析,并且具有实际运行能力。对分析结果进行12h预报表明,GRAPES集合卡尔曼滤波资料同化系统的分析协调性不如三维变分资料同化系统。
|