首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The settling of consecutive spheres in viscoplastic fluids
Authors:MM Gumulya  RR Horsley  KC Wilson
Institution:1. Department of Applied Chemistry, Curtin University of Technology, Perth, WA 6845, Australia;2. Department of Civil Engineering, Queen''s University Kingston, Ontario Canada K7L3N6
Abstract:One of the factors contributing to the uncertainties involved in the estimation of particle settling velocity in viscoplastic fluids is the time-dependent effect where the viscous parameters of the fluid change as a particle flows through and shears the medium. These changes, particularly at low shear Reynolds numbers, are reflected in the settling velocity of a following sphere that is released some time after an initial one, with the following sphere having a significantly greater velocity. This study found that changes in both fall velocity and equivalent viscosity can be correlated satisfactorily by a power law equation to the dimensionless form of the time interval between releases, and the rheogram shape factor for the fluid. A collision of particles occurs in cases where the time interval between releases is small, after which the particles combine and travel at a terminal velocity. A new variable, β, which takes into account the different surficial stress of the combined spheres, was introduced to the correlation of Wilson et al. Wilson, K.C., Horsley, R.R., Kealy, T., Reizes, J.A., Horsley, M.R., 2003. Direct prediction of fall velocities in non-Newtonian materials. Int. J. Miner. Process. 71, 17–30] β was found to depend on the rheogram shape factor for the fluid and the shear Reynolds number for the particle. The validity of this approach was supported by experimental data.
Keywords:Fall velocity  Non-Newtonian flow  Drag curve  Equivalent viscosity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号