首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lead isotope and Pb-Pb model age determinations of ores from Central Europe and their metallogenetic interpretation
Authors:K -H Bielicki  G Tischendorf
Institution:(1) Central Institute of Isotope and Radiation Research, Permoserstraße 15, O-7050 Leipzig, Federal Republic of Germany;(2) Central Institute of Physics of the Earth, Telegrafenberg, O-1561 Potsdam, Federal Republic of Germany
Abstract:The paper presents lead isotope data from 211 samples from Phanerozoic lead-bearing ore occurrences in Central Europe, particularly from the Southern part of the former German Democratic Republic. The data are interpreted in terms of Amov's dynamic model of continuous lead isotope evolution. The relationships between thoro-genic and urano-genic model ages and the source of lead in different regional units are discussed. We observed differences in lead isotope evolution in the Hercynian internides and externides. Within the Moldanubian and Saxothuringian zones we distinguish five main lead-bearing ore associations: (1) Cambrian, stratiform base metal (Hermsdorf-Waldsassen; 206Pb/ 204Pb=17.50–17.70), (2) Devonian, vein type Sb-bearing, metamorphogene (neumühle-Hartmannsdorf; 17.80–18.00), (3) Upper Carboniferous-Permian, polymetallic, including tin, vein type (Kutna hora-Freiberg-Altenberg; 18.00–18.20), (4) Triassic (-Jurassic), Pb–Ba, vein type (Strcaronibro-Halsbrücke; 18.20–18.60), (5) Cenozoic, polymetallic, vein type, riftogene (Roztoky-Banska Scarontiavnica; 18.80–19.10). Pb isotope characteristics from ores of the Montagne Noire and the Brioude-Massiac district correspond to this subdivision. Ore associations from the Rheno-Hercynian zone display higher 207Pb/204Pb ratios which can be explained by more evolved and less metamorphosed source rocks. Mineralizations of the eastern Harz (Straßberg-Neudorf) belong to the Permian association, those from the western Harz (Clausthal-Bad Grund) to the Triassic-Jurassic. Because of Pb isotope agreement the stratabound Rammelsberg and the vein bound Ramsbeck-I mineralization are presumed to be isogenetic. Pb isotope identity of distinct mineralizations in the basement zone (Halsbrücke-Bad Grund) and in the Triassic sediments (Gorny Slask-Mechernich-Bleiglanzbänke) suggests a strong genetic coherence. Pb isotope conformity between the Upper Carboniferous-Permian-Triassic ore associations and Hercynian postkinematic granitoids, and lamprophyric rocks, also favours a close relationship. Pb isotope and other data indicate crustal sources. As the age of the ore associations decreases, crustal influences generally increase, apart from the Roztoky mineralization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号