首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atmospheric pressure changes due to volcanic eruptions and possible water level fluctuations
Authors:M B Danard  T S Murty
Institution:1. Atmospheric Dynamics Corporation, 3052 Woodridge Place, R.R. 7, V8X 3X3, Victoria, B.C., Canada
2. University of Victoria, P.O. Box 1700, V8W 2Y2, Victoria, B.C., Canada
3. Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, V8L 4B2, Sidney, B.C., Canada
Abstract:The data of Reed (1983) are analysed to produce the following empirical equations for the amplitude p 0 (overall fluctuation) in Pascals of the air pressure wave associated with a volcanic eruption of volume V km3 or a nuclear explosion of strength M Mt: Here s is the distance from the source in km. $$\begin{gathered} \log _{10} p_0 = 4.44 + \log _{10} V - 0.84\log _{10} s \hfill \\ {\text{ }} = 3.44 + \log _{10} M - 0.84\log _{10} s. \hfill \\ \end{gathered} $$ Garrett's (1970) theory is examined on the generation of water level fluctuations by an air pressure wave crossing a water depth discontinuity such as a continental shelf. The total amplitude of the ocean wave is determined to be where c 2 1 = gh 1, c 2 2 = gh 2, g is acceleration of gravity, h 1 and h 2 are the water depths on the ocean and shore side of the depth discontinuity, c is the speed of propagation of the air pressure wave, and ? is the water density. $$B = \left {\frac{{c_2^2 }}{{c^2 - c_2^2 }} + \frac{{c^2 (c_1 - c_2 )}}{{(c - c_1 )(c^2 - c_2^2 )}}} \right]\frac{{p_0 }}{{g\varrho }}$$ It is calculated that a 10 km3 eruption at Mount St. Augustine would cause a 460 Pa air pressure wave and a discernible water level fluctuation at Vancouver Island of several cm amplitude.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号