首页 | 本学科首页   官方微博 | 高级检索  
     


Zircon U–Pb Age and Deformation Characteristics of the Jiama Porphyry Copper Deposit,Tibet: Implications for Relationships between Mineralization,Structure and Alteration
Authors:Jilin Duan  Juxing Tang  Russell Mason  Wenbao Zheng  Lijuan Ying
Affiliation:1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, , Beijing, China;2. MLR Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, CAGS, , Beijing, China;3. China Gold International Resources Corp. Ltd., , Beijing, China
Abstract:The Jiama copper deposit is one of the largest deposits recently found in Tibet and is composed of three types of mineralization including skarn, hornfels and porphyry. To investigate the relationship between mineralization, structure and alteration, we report new zircon U–Pb age and present field observations on the deformation characteritics associated with the copper mineralization in Jiama. Two main periods of deformation were identified, represented by D1 and D2 in Jiama. The first deformation (D1) occurred around 50 Ma, whereas the second deformation (D2) that was closely related to mineralization occurred later. Previous zircon U–Pb and molybnite Re–Os dating results indicate that the mineralizatoin occurred at ~15 Ma and thus the D1 regional deformation significantly occurred before the mineralization time, although the D1 deformation probably provided important space for the development of significant copper deposition. Our new mapping and observations on the D2 deformation demonstrate that the mineralization was closely coeval with or slightly later than the time of D2 deformation. The new U–Pb zircon age further indicates that the aplite formed in ~17.0 Ma and thus the D2 deformation happened later than this time because the D2 deformation cut across the aplite, which is proposed to be the key control for copper mineralization. Altered laminated hornfels including three types of alteration (A‐, K‐ and S‐type) were found spatially associated with the D2 deformation. The type‐A is mainly silicification, with fine sericite or chlorite, as well as abundant disseminated sulphides on fracture surfaces; the type‐S is mainly fine‐grained silicification with patches of chlorite, epidote and common sulphides; the type‐K (potassic alteration) appears to be fine‐grained biotite. Such types of alteration indicate the presence of skarns at depth where ore shoots are located. Taken together, the multiple structural‐magmatic‐mineralization events contributed to the formation of the supergiant Jiama porphyry copper deposit in Tibet. The results have general implication for regional exploration.
Keywords:deformation  Jiama  mineralization  structure  Tibet
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号