首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat loss from the earth: A constraint on Archaean tectonics from the relation between geothermal gradients and the rate of plate production
Authors:MJ Bickle  
Institution:

aDepartment of Geology and Mineralogy, Oxford University, Parks Road, Oxford OX1 3PR England

Abstract:The models suggested for the oceanic lithosphere which best predict oceanic heat flow and depth profiles are the constant thickness model and a model in which the lithosphere thickens away from the ridge with a heat source at its base. The latter is considered to be more physically realistic. Such a model, constrained by the observed oceanic heat flow and depth profiles and a temperature at the ridge crest of between 1100°C and 1300°C, requires a heat source at the base of the lithosphere of between 0.5 and 0.9 h.f.u., thermal conductivities for the mantle between 0.005 and 0.0095 cal cm?1 °C?1 s?1 and a coefficient of thermal expansion at 840°C between 4.1 × 10?5 and 5.1 × 10?5 °C?1. Plate creation and subduction are calculated to dissipate about 45% of the total earth heat loss for this model. The efficiency of this mechanism of heat loss is shown to be strongly dependent on the magnitude of the basal heat source. A relation is derived for total earth heat loss as a function of the rate of plate creation and the amount of heat transported to the base of plates. The estimated heat transport to the base of the oceanic lithosphere is similar to estimates of mantle heat flow into the base of the continental lithosphere. If this relation existed in the past and if metamorphic conditions in late Archaean high-grade terrains can be used to provide a maximum constraint on equilibrium Archaean continental thermal gradients, heat flow into the base of the lithosphere in the late Archaean must have been less than about 1.2–1.5 h.f.u. The relation between earth heat loss, the rate of plate creation and the rate of heat transport to the base of the lithosphere suggests that a significant proportion of the heat loss in the Archaean must have taken place by the processes of plate creation and subduction. The Archaean plate processes may have involved much more rapid production of plates only slightly thinner than at present.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号