首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The sources and budget for dissolved sulfate in a fractured carbonate aquifer,southern Sacramento Mountains,New Mexico,USA
Authors:Anna Szynkiewicz  B Talon Newton  Stacy S Timmons  David M Borrok
Institution:1. Indiana University, 1001 E. 10th Street, Bloomington, IN 47408, USA;2. University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA;3. New Mexico Bureau of Geology and Mineral Resources, Socorro, NM, USA
Abstract:Climate change in the SW USA is likely to involve drier conditions and higher surface temperatures. In order to better understand the evolution of water chemistry and the sources of aqueous SO4 in these semi-arid settings, chemical and S isotope compositions were determined of springs, groundwater, and bedrock associated with a Permian fractured carbonate aquifer located in the southern Sacramento Mountains, New Mexico, USA. The results suggest that the evolution of water chemistry in the semi-arid carbonate aquifer is mainly controlled by dedolomitization of bedrock, which was magnified by increasing temperature and increasing dissolution of gypsum/anhydrite along the groundwater flow path. The δ34S of dissolved SO4 in spring and groundwater samples varied from +9.0‰ to +12.8‰, reflecting the mixing of SO4 from the dissolution of Permian gypsum/anhydrite (+12.3‰ to +13.4‰) and oxidation of sulfide minerals (−24.5‰ to −4.2‰). According to S isotope mass balance constraints, the contribution of sulfide-derived SO4 was considerable in the High Mountain recharge areas, accounting for up to ∼10% of the total SO4 load. However, sulfide weathering decreased in importance in the lower reaches of the watershed. A smaller SO4 input of ∼2–4% was contributed by atmospheric wet deposition. This study implies that the δ34S variation of SO4 in semi-arid environments can be complex, but that S isotopes can be used to distinguish among the different sources of weathering. Here it was found that H2SO4 dissolution due to sulfide oxidation contributes up to 5% of the total carbonate weathering budget, while most of the SO4 is released from bedrock sources during dedolomitization.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号