首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Unifying Phase Diagram for the Dynamics of Sheared Solids and Granular Materials
Authors:Yehuda Ben-Zion  Karin A Dahmen  Jonathan T Uhl
Institution:1. Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089-0740, USA
2. Department of Physics, University of Illinois at Urbana Champaign, 1110 West Green Street, Urbana, IL, 61801, USA
3. Los Angeles, USA
Abstract:We present a simple unifying model that can be used to analyze, within a single framework, different dynamic regimes of shear deformation of brittle, plastic, and granular materials. The basic dynamic regimes seen in the response of both solids and granular materials to slowly increasing loading are scale-invariant behavior with power law statistics, quasi-periodicity of system size events, and persisting long term mode switching between the former two types of response. The model provides universal analytical mean field results on the statistics of failure events in the different regimes and distributed versus localized spatial responses. The results are summarized in a phase diagram spanned by three tuning parameters: dynamic strength change (weakening, neutral or strengthening) during slip events, dissipation of stress transfer (related to the void fraction in granular materials and damaged solids), and the ratio of shear rate over healing rate controlling the regaining of cohesion following failures in brittle solids. The mean field scaling predictions agree with experimental, numerical, and observational data on deformation avalanches of solids, granular materials, and earthquake faults. The model provides additional predictions that should be tested with future observation and simulation data.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号