首页 | 本学科首页   官方微博 | 高级检索  
     


Conditional Simulation of Random Fields with Bivariate Gamma Isofactorial Distributions
Authors:Xavier Emery
Affiliation:(1) Department of Mining Engineering, University of Chile, Avenida Tupper, 2069 Santiago, Chile
Abstract:This work focuses on a random function model with gamma marginal and bivariate isofactorial distributions, which has been applied in mining geostatistics for estimating recoverable reserves by disjunctive kriging. The objective is to widen its use to conditional simulation and further its application to the modeling of continuous attributes in geosciences. First, the main properties of the bivariate gamma isofactorial distributions are analyzed, with emphasis in the destructuring of the extreme values, the presence of a proportional effect (higher variability in high-valued areas), and the asymmetry in the spatial correlation of the indicator variables with respect to the median threshold. Then, we provide examples of stationary random functions with such bivariate distributions, for which the shape parameter of the marginal distribution is half an integer. These are defined as the sum of squared independent Gaussian random fields. An iterative algorithm based on the Gibbs sampler is proposed to perform the simulation conditional to a set of existing data. Such ‘multivariate chi-square’ model generalizes the well-known multigaussian model and is more flexible, since it allows defining a shape parameter which controls the asymmetry of the marginal and bivariate distributions.
Keywords:Gaussian random fields  multigaussian distribution  multivariate Chi-square distribution  Gibbs sampler  destructuring effect
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号