高光谱目标探测的进展与前沿问题 |
| |
引用本文: | 张良培. 高光谱目标探测的进展与前沿问题[J]. 武汉大学学报 ( 信息科学版), 2014, 39(12): 1377-1394+1400. |
| |
作者姓名: | 张良培 |
| |
作者单位: | 1武汉大学测绘遥感信息工程国家重点实验室湖北 武汉 430079 |
| |
基金项目: | 国家自然科学基金资助项目(41431175)~~ |
| |
摘 要: | 针对高光谱目标探测问题的主要挑战,将高光谱目标探测的进展与前沿问题分为两个方面进行综述。基于信号检测理论的方法如结构化背景的约束能量最小化方法、非结构化背景的自适应一致性余弦评估器等,是高光谱目标的探测经典算法;随着统计模式识别与机器学习领域中新技术的出现,一些数据驱动的目标探测方法逐渐成为了高光谱目标探测的前沿问题,如核方法、稀疏表达方法等。概述了两类方法的特点,比较了各自的优势和不足,并展望了高光谱目标探测未来的发展趋势。
|
关 键 词: | 高光谱图像处理 目标探测 信号检测 机器学习 |
收稿时间: | 2014-09-04 |
本文献已被 CNKI 等数据库收录! |
| 点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息 |
|
点击此处可从《武汉大学学报(信息科学版)》下载免费的PDF全文 |
|